Home
Class 12
MATHS
If I1= inte^(e^2)dx/logx and I2= int1^2e...

If `I_1= int_e^(e^2)dx/logx` and `I_2= int_1^2e^x/xdx`, then find relation between `I_1` and `I_2`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e )^(e^(2)) (dx)/(log x) and I_(2)= int_(1)^(2)(e^(x))/(x)dx , then which of the following is correct ?

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

int_(0)^(1)2e^(x)dx

int_(1)^(e)(logx)^(2)dx

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , t h e n r e l a t e I_1 a n d I_2

if I=int_0^(1.7)[x^2]dx then I equals

int_(1)^(e)(dx)/(x(1+logx))

If I_(1)=int sin^(-1)x dx and I_(2)=int sin^(-1) sqrt(1-x^(2)) dx then -

If I_(1)=int e^(x) cos x dx and I_(2)=int e^(x) sin x dx , then the value of I_(1)+I_(2) is-

If I_(1)int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then,