Home
Class 12
MATHS
int0^1000 e^(x-[x]) dx is equal to...

`int_0^1000 e^(x-[x]) dx` is equal to

A

`(e^(1000)-1)/(e-1)`

B

`(e^(1000)-1)/1000`

C

(e-1)/1000

D

1000(e-1)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

int_0^(100)e^(x-[x])dx=

int_0^1 x(1-x)^9 dx is equal to ?

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

int e^(x^4) (x^3) dx is equal to

The value of int e^(x)[f(x)+f'(x)]dx is equal to -

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

The value of x satisfying int_0^(2[x+14]){x/2}dx=int_0^({x})[x+14]dx is equal to (where[.] and{.} denotes the greatest integer and fractional part of x

if f(x) is a function such that f(x+k)=f(x) for K in I^+ and I=int_0^k f(x)dx then I=int_0^(k^(2-k))f(x)dx is equal to

If f(x)=f(a-x) then int_(0)^(a)xf(x)dx is equal to

The value of int sqrt(e^(x)-1)dx is equal to -