Home
Class 12
MATHS
int0^1 x(1-x)^9 dx is equal to ?...

`int_0^1 x(1-x)^9 dx` is equal to ?

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

int_0^1000 e^(x-[x]) dx is equal to

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

int (x^(2)+1)/(x) dx is equal to -

If for x =0 af(x) +bf(1/x)=1/x-5 where a ne b then int_1^2xf(x) dx is equal to

The value of int_(-1)^(1)|1-x| dx is equal to -

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in[0,a] then int_0^a dx/(1+e^f(x) is equal to

int_(-1)^1(x-abs(2x))dx is equal to

The value of int_(0)^(1)sin[2tan^(-1)sqrt((1+x)/(1-x))]dx is equal to -