Home
Class 12
MATHS
int0^pi (xdx)/(1+sinx) is equal to...

`int_0^pi (xdx)/(1+sinx) ` is equal to

A

0

B

`pi/4`

C

`pi/2`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=abs(sinx)+abs(cosx) ,then int_0^pi f(x) dx is equal to

The value of the integral int_(pi)^(10pi) |sinx|dx is equal to -

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

If int_(0)^(oo) (sinx)/x dx=(pi)/2, then int_(0)^(oo) (sin^(3)x)/x dx is equal to

integral 0 to pi xf(sinx) dx is equal to

Evaluate: int_0^pi(dx)/(1+sinx)

int_(0)^((pi)/(4))(dx)/(1+sinx)

if int_0^(pi)(x/(1+sinx))^2dx=A , then int_0^(pi)((2x^2).(cos^2(x/2)))/(1+sinx)^2 is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of int_(0)^((pi)/(2)) (2^(sinx)dx)/(2^(sinx)+2^(cosx)) is equal to -