Home
Class 12
MATHS
The value of int(1/e^2)^e abs(logx)dx is...

The value of `int_(1/e^2)^e abs(logx)dx `is

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

The value of int_((1)/(e ))^(e )|log x|dx is equal to -

The value of int_(0)^(1)(x^(a)-1)/(logx)dx is

Find the value of int_(1/2)^(2)e^(|x-1/x|)dx .

int_(1)^(e)(1+logx)/(x)dx

The value of int e^(5logx)dx is

Evaluate : int_1^2 (e^(x^2))dx=a , then find the value of int_e^(e^4)root2(log_ex)dx

The value of int e^(x log a)*e^(x)dx is equal to -

int_(1)^(e)(logx)^(2)dx

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)