Home
Class 12
MATHS
If I=int0^(pi/4)log(1+tanx) dx then I is...

If `I=int_0^(pi/4)log(1+tanx) dx` then I is equal to

A

`pi/8log_e2`

B

`pi/4log_e2`

C

`-pi/8log_e2`

D

`-pi/4log_e2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi/2) log(cotx)dx

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

int_(0)^((pi)/(2))log(tanx)dx=0

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is

The value of the integral int_0^(pi/2) 1/(1 + (tanx)^101) dx is equal to

Evaluate : int_0^(pi/4)log(1+tanx)dx .

The value of int_(0)^(pi)log sin^(2)x dx is equal to -

if I_10=int_0^(pi/2) x^(10) sinx dx then the value of I_10 + 90 I_8 is

The value of int_0^(pi/2)log(tanx)dx is