Home
Class 12
MATHS
If f(x) be an increasing function define...

If f(x) be an increasing function defined on [a,b] then max {f(t) `aletx ,alexleb}=f(x) and min {f(t) `aletlex, alexleb}`=f(b) and if f(x) be a decreasing function defined on [a,b]
`lim_0^3min{1,absx,abs(x-2)} dx ` is equal to

A

1

B

44257

C

2

D

44318

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

Let f be a function defined on [0,2]. Then find the domain of function g(x)=f(9x^2-1)

The function f(x) is defined in [0,1] . Find the domain of f(t a nx)dot

Let f be a function defined on [a, b] such that f ′(x) gt 0, for all x in (a, b). Then prove that f is an increasing function on (a, b).

If f(x) is an odd differentiable function defined on (-oo,oo) such that f'(3)=2 , then f'(-3) equal to

IF f(x) is an odd differentiable function defined on (-oo, oo) such that f'(3) = 2, then f'(-3) equal to

In the function f(x) is defined for x in[0,1] then the function f(2x+3) is defined for

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

A function is defined as f(x) = {(e^x, xle0),(|x-1|, x gt0):} , then f(x) is

Let f(x) be a continuous function defined for 1 le x le 3. If f(x) takes rational values for all x and f(2) = 10, then f(1,5) is equal to

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

PATHFINDER-DEFINITE INTEGRATION-QUESTION BANK
  1. Let f(x) be a continous function defined on the closed interval [a,b] ...

    Text Solution

    |

  2. Let f(x) be a continous function defined on the closed interval [a,b] ...

    Text Solution

    |

  3. If f(x) be an increasing function defined on [a,b] then max {f(t) alet...

    Text Solution

    |

  4. If f(x) be an increasing function defined on [a,b] then max {f(t) alet...

    Text Solution

    |

  5. Choose the correct answer: The hybridisation of the carbon atom (under...

    Text Solution

    |

  6. Choose the correct answer: The hybridisation of the carbon atom (under...

    Text Solution

    |

  7. If int0^(pi/2) sintheta log sintheta d theta =log (A/(198e)) then the ...

    Text Solution

    |

  8. If int0^1 dx/((1+x)(2+x)(sqrt(x(1-x)))) = (piA)/(sqrt6(sqrt3+1)) then ...

    Text Solution

    |

  9. If-int0^(2pi) [sinx+cosx]dx =Api and [x] denotes the greatest integer ...

    Text Solution

    |

  10. The value of the integral sqrt2 int0^pi sqrt(1-cos2x) dx is ?

    Text Solution

    |

  11. The value of the integral sqrt2 int0^(pi/2) f(sin2x) sinx dx=A (sqrt2/...

    Text Solution

    |

  12. Evaluate int0^sqrt3 (1/(1+x^2)) sin^(-1)((2x)/(1+x^2)) dx

    Text Solution

    |

  13. Evaluate : int0^(pi//2) cos^3xcdot sinx dx

    Text Solution

    |

  14. Evaluate int0^(pi/4) (e^(secx) (sin(x+(pi/4)))/(cosx(1-sinx)) dx

    Text Solution

    |

  15. If absalt1 show that int0^pi (log(1+acosx))/cosx dx= pisin^(-1)a

    Text Solution

    |

  16. If Un=int0^pi (1-cosnx)/(1-cosx) dx where n is positive integer or zer...

    Text Solution

    |

  17. Prove that int0^x e^(xt)e^(-t^2)dt =e^(x^2/4) int0^xe^(-t^2/4)dt

    Text Solution

    |

  18. Find a function g:R rarr R continous in [0,infty] satisfying g(0) =1 a...

    Text Solution

    |

  19. Evaluate underset(nrarrinfty)lim 1/n overset(4n)underset(r=1)sum r/(sq...

    Text Solution

    |

  20. If In=int0^1 x^ntan^(-1)x dx then prove that (n+1)In +(n-1)I(n-2)=(pi/...

    Text Solution

    |