Home
Class 12
MATHS
If Un=int0^pi (1-cosnx)/(1-cosx) dx wher...

If `U_n=int_0^pi (1-cosnx)/(1-cosx)` dx where n is positive integer or zero, then show that `U_(n+2)+U_n =2U_(n+1)`. Hence deduce that `int_0^pi (sin^2ntheta)/(sin^2theta) =1/2(npi)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

If U_n=int_0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zero, then show that U_(n+2)+U_n=2U_(n+1)dot Hence, deduce that int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Show that, int_(0)^(n pi+v)|sin x|dx=2n+1-cosv , where n is a positive integer and 0 le v le pi .

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -

Evaluate: int_0^(pi/2)(sinx+cosx)^2/(1+sin2x)^(1/2)dx

Prove that, int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2) .

If n is a positive integer and U_(n) = (3 + sqrt5)^(n) + (3 - sqrt5)^(n) , then prove that U_(n + 1) = 6U_(n) - 4U_(n -1), n ge 2

If m and n are positive integers and m ne n , show : int_(0)^(2pi)sinmxsinnxdx=0

PATHFINDER-DEFINITE INTEGRATION-QUESTION BANK
  1. Evaluate int0^(pi/4) (e^(secx) (sin(x+(pi/4)))/(cosx(1-sinx)) dx

    Text Solution

    |

  2. If absalt1 show that int0^pi (log(1+acosx))/cosx dx= pisin^(-1)a

    Text Solution

    |

  3. If Un=int0^pi (1-cosnx)/(1-cosx) dx where n is positive integer or zer...

    Text Solution

    |

  4. Prove that int0^x e^(xt)e^(-t^2)dt =e^(x^2/4) int0^xe^(-t^2/4)dt

    Text Solution

    |

  5. Find a function g:R rarr R continous in [0,infty] satisfying g(0) =1 a...

    Text Solution

    |

  6. Evaluate underset(nrarrinfty)lim 1/n overset(4n)underset(r=1)sum r/(sq...

    Text Solution

    |

  7. If In=int0^1 x^ntan^(-1)x dx then prove that (n+1)In +(n-1)I(n-2)=(pi/...

    Text Solution

    |

  8. If f(x)=x+int0^1(xy^2+x^2y) dy find f(x)

    Text Solution

    |

  9. The total number of distinct x in[0,1] for which int0^x t^2/(1+t^4) dt...

    Text Solution

    |

  10. The value of int(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

    Text Solution

    |

  11. underset(nrarrinfty)lim((n+1)(n+2)....3n)/(n^(2n)))^(1/n) is equal to

    Text Solution

    |

  12. int0^5 ((1/x)-1) dx= ?

    Text Solution

    |

  13. The value of underset(nrarrinfty)lim {(sqrt(n+1) +sqrt(n+2) +......+sq...

    Text Solution

    |

  14. if [x] denotes the greatest integer less than or equal to x then integ...

    Text Solution

    |

  15. (phi)t={1, for 0lelt1 0 otherwise then int(-3000)^(3000) (underset(r...

    Text Solution

    |

  16. Let f:RrarrR be a function defined by f(x)={([x],x,le,2),(0,x,gt,2):} ...

    Text Solution

    |

  17. If alpha=int0^1(e^(9x+3tan^-1x))((12+9x^2)/(1+x^2))dx where tan^-1x t...

    Text Solution

    |

  18. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  19. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  20. If f(x) + 2f(1 - x) =x^2 + 2, forall x in R, then f(x) is

    Text Solution

    |