Home
Class 12
MATHS
Let f:RrarrR be a function defined by f(...

Let `f:RrarrR` be a function defined by `f(x)={([x],x,le,2),(0,x,gt,2):}`
where [x] is the greatest integer less than or equal to x. If `I=int_-1^2(xf(x^2))/(2+f(x+1))dx`, then the value of (4I-1) is

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

Let f: RR to RR be a function defined by f(x)={{:([x],x le2),(0,x gt2):} , where [x] is the greatest integer less than or equal to x. If I=int_(-1)^(2)(xf(x^(2)))/(2+f(x+1))dx , then the value of (4I-1) is-

Let f: R->R be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) where [x] is the greatest integer less than or equal to xdot If I=int_(-1)^2(xf(x^2))/(2+f(x+1))dx , then \ the \ value \ of \ (4I-1)i s

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

If f: R rarr R is a function defined by f(x)=[x]cos((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is

If f:RR to RR is a function defined by f(x)=[x]cos((2x-1)/(2))pi , where [x] denotes the greatest integer function, then f is-

If f(x)= x-[x],x(phi0)inR , where [x] is greatest integer less than or equal to x, then the number of solution of f(x)+f(1/x)=1 are

Let f : (4, 6)to(6, 8) be a function defined by f(x) x+[x/2] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

[x] denotes the greatest integer, less than or equal to x, then the value of the integral int_(0)^(2)x^(2)[x]dx equals

The function f(x)=tan{pi[x-pi/2]}/(2+[x^2] , where [x] denotes the greatest integer le x, is

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to-

PATHFINDER-DEFINITE INTEGRATION-QUESTION BANK
  1. if [x] denotes the greatest integer less than or equal to x then integ...

    Text Solution

    |

  2. (phi)t={1, for 0lelt1 0 otherwise then int(-3000)^(3000) (underset(r...

    Text Solution

    |

  3. Let f:RrarrR be a function defined by f(x)={([x],x,le,2),(0,x,gt,2):} ...

    Text Solution

    |

  4. If alpha=int0^1(e^(9x+3tan^-1x))((12+9x^2)/(1+x^2))dx where tan^-1x t...

    Text Solution

    |

  5. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  6. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  7. If f(x) + 2f(1 - x) =x^2 + 2, forall x in R, then f(x) is

    Text Solution

    |

  8. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  9. Let F:RrarrR be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  10. The integral int2^4 (logx^2)/((logx^2)+log(36-12x+x^2)) dx is equal to...

    Text Solution

    |

  11. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  12. underset(nrarrinfty)lim (sqrt1+sqrt2+.......+sqrt(n-1))/(nsqrtn) = ?

    Text Solution

    |

  13. Let f : Rrarr R be a continuous function which satisfies f(x) = int0^x...

    Text Solution

    |

  14. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  15. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  16. Let f : (0,infty) rarr R be given by f(x) = int(1/x)^(x) e^-(t + 1/t...

    Text Solution

    |

  17. Let f : [a , b]rarr [1, infty] be a continuous function and let g : R ...

    Text Solution

    |

  18. The value of int0^1 4x^3 {d^2/(dx^2) (1 - x^2)^5 } dx is

    Text Solution

    |

  19. The following integral int(pi/4)^(pi/2) (2 cosec x)^17 dx is equal to

    Text Solution

    |

  20. Let f : [0,2] rarr R be a function which is continuous on [0 , 2] and ...

    Text Solution

    |