Home
Class 12
MATHS
Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^...

Let `x_n = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2))^2, n ge 2` Then the value of `underset(nrarrinfty)(lim) x_n` is

A

10

B

12

C

8

D

16

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nrarrprop) ((n+1)(2n+1))/n^2 is

Evaluate : underset(nrarrinfty)lim((1^m+2^m+...+n^m)/n^(m+1))

The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+.....oo

value of underset(nrarrinfty)lim((n !)/n^n)^(1/n),where n inN is equal to

Evaluate: underset(nrarrinfty)lim (1/(n+1)+1/(n+2)+....+1/(2n))

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

Given (1-2x+5x^2-10x^3)(1+x)^n=1+a_1x+a_2x^2+.... and that a_1^2=2a_2 , then the value of n is

Evaluate : underset(nrarrinfty)lim [1/n + 1/(n+1)+ 1/(n+2) + .... +1/(4n)]

Let f(x) be a continous function defined on the closed interval [a,b] then underset(nrarrinfty)lim sumunderset(r=1)overset(n) (1/n)f(r/n)=int_0^1f(x)dx The value of underset(nrarrinfty)lim (1/n) [(1/(n+1))+2/(n+2)+......+1/2} is

PATHFINDER-DEFINITE INTEGRATION-QUESTION BANK
  1. Let F:RrarrR be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  2. The integral int2^4 (logx^2)/((logx^2)+log(36-12x+x^2)) dx is equal to...

    Text Solution

    |

  3. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  4. underset(nrarrinfty)lim (sqrt1+sqrt2+.......+sqrt(n-1))/(nsqrtn) = ?

    Text Solution

    |

  5. Let f : Rrarr R be a continuous function which satisfies f(x) = int0^x...

    Text Solution

    |

  6. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  7. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  8. Let f : (0,infty) rarr R be given by f(x) = int(1/x)^(x) e^-(t + 1/t...

    Text Solution

    |

  9. Let f : [a , b]rarr [1, infty] be a continuous function and let g : R ...

    Text Solution

    |

  10. The value of int0^1 4x^3 {d^2/(dx^2) (1 - x^2)^5 } dx is

    Text Solution

    |

  11. The following integral int(pi/4)^(pi/2) (2 cosec x)^17 dx is equal to

    Text Solution

    |

  12. Let f : [0,2] rarr R be a function which is continuous on [0 , 2] and ...

    Text Solution

    |

  13. Given that for each a in (0,1), underset(h rarr 0)(lim) inth^(1 - h)...

    Text Solution

    |

  14. Given that for each a in (0,1), underset(h rarr 0)(lim) inth^(1 - h)...

    Text Solution

    |

  15. Match List - I with List - II

    Text Solution

    |

  16. The integral int0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx equals :

    Text Solution

    |

  17. If I = int0^2 (e^x)^4 (x - alpha) dx = 0, then alpha lies in the inter...

    Text Solution

    |

  18. Suppose M = int0^(pi/2) cosx/(x+2) dx , N = int0^(pi/4) sinxcosx/(x+1)...

    Text Solution

    |

  19. Let f(x) = max{x + absx, x - [x]}, where [x] de notes the greatest int...

    Text Solution

    |

  20. Let f(x) = {(int0^x abs(1 - t) dt , x gt 1),(x - 1/2 , x le 1):} Then

    Text Solution

    |