Home
Class 12
MATHS
underset(nrarrinfty)lim (sqrt1+sqrt2+......

`underset(nrarrinfty)lim (sqrt1+sqrt2+.......+sqrt(n-1))/(nsqrtn)` = ?

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo)(sqrt1+sqrt2+......+sqrt(n-1))/(nsqrtn)=

underset(n to oo)lim(sqrt(1)+sqrt(2)+…+sqrt(n-1))/(nsqrt(n))=

Evaluate (with the help of definite integral) underset(n rarr infty)lim[1/sqrtn+1/sqrt(2n)+1/sqrt(3n)+….+1/n]

Evaluate : underset(xrarr3)"lim"(sqrt(x-3)+sqrt(x)-sqrt(3))/(sqrt(x^(2)-9)

underset(xrarr0)"lim"(sinx)/(sqrt(x)) is -

Evaluate : underset (nrarrinfty)lim underset(r=0)overset(n-1)sum 1/sqrt(4n^2-r^2)

Evaluate : underset(nrarroo)"lim"(sqrt(1+n^(2))-sqrt(1+n))/(sqrt(1+n^(3))-sqrt(1+n))

Evaluate : underset(nrarrinfty)Lt[(1)/(sqrt(n^2 - 1^2)) + 1/(sqrt(n^2-2^2)) +1/(sqrt(n^2 - 3^2))+....+ 1/(sqrt(n^2 - (n-1)^2))]

Prove that underset( n rarr infty) lim[1/n+sqrt(n^2-1^2)/n^2+sqrt(n^2-2^2)/n^2+…..sqrt(n^2-(n-1)^2)/n^2] = pi/4

underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)= ?

PATHFINDER-DEFINITE INTEGRATION-QUESTION BANK
  1. The integral int2^4 (logx^2)/((logx^2)+log(36-12x+x^2)) dx is equal to...

    Text Solution

    |

  2. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  3. underset(nrarrinfty)lim (sqrt1+sqrt2+.......+sqrt(n-1))/(nsqrtn) = ?

    Text Solution

    |

  4. Let f : Rrarr R be a continuous function which satisfies f(x) = int0^x...

    Text Solution

    |

  5. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  6. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  7. Let f : (0,infty) rarr R be given by f(x) = int(1/x)^(x) e^-(t + 1/t...

    Text Solution

    |

  8. Let f : [a , b]rarr [1, infty] be a continuous function and let g : R ...

    Text Solution

    |

  9. The value of int0^1 4x^3 {d^2/(dx^2) (1 - x^2)^5 } dx is

    Text Solution

    |

  10. The following integral int(pi/4)^(pi/2) (2 cosec x)^17 dx is equal to

    Text Solution

    |

  11. Let f : [0,2] rarr R be a function which is continuous on [0 , 2] and ...

    Text Solution

    |

  12. Given that for each a in (0,1), underset(h rarr 0)(lim) inth^(1 - h)...

    Text Solution

    |

  13. Given that for each a in (0,1), underset(h rarr 0)(lim) inth^(1 - h)...

    Text Solution

    |

  14. Match List - I with List - II

    Text Solution

    |

  15. The integral int0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx equals :

    Text Solution

    |

  16. If I = int0^2 (e^x)^4 (x - alpha) dx = 0, then alpha lies in the inter...

    Text Solution

    |

  17. Suppose M = int0^(pi/2) cosx/(x+2) dx , N = int0^(pi/4) sinxcosx/(x+1)...

    Text Solution

    |

  18. Let f(x) = max{x + absx, x - [x]}, where [x] de notes the greatest int...

    Text Solution

    |

  19. Let f(x) = {(int0^x abs(1 - t) dt , x gt 1),(x - 1/2 , x le 1):} Then

    Text Solution

    |

  20. Statement - 1 : The value of the integral int(pi/6)^(pi/3) dx/(1 + s...

    Text Solution

    |