Home
Class 12
MATHS
Let f : (0,infty) rarr R be given by f...

Let f : `(0,infty) rarr R` be given by
`f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t`
then

A

f(x) is monotonically increasing on `(1 , infty)`

B

f(x) is monotonically decreasing on (1,0)

C

f(x) + f(1/x) = 0, for all `x in (0, infty)`

D

`f(2^)` is an odd function of x on R

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

Let, f:(0,oo)toR be given by f(x)=int_((1)/(x))^(x)e^(-(t+(1)/(t)))(dt)/(t) Then

Let f:(0,oo)rarrRR be given by f(x)=oversetxunderset(1/x)inte^((t+1/t))dt/t Then

Let f(x) = int_2^x f(t^2-3t+2) dt then

Let f : R rarr R be a continuous function which satisfies f(x) = int_0^x f(t) dt . Then the value of f(log_e 5) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f : (-infty,1] rarr (-infty, 1] such that f(x) = x(2 -x), then f^-1 (x) is

The interval in which f(x) defined by f(x) = int_(-1)^x (t^2+2t)(t^2-1) dt increases

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

PATHFINDER-DEFINITE INTEGRATION-QUESTION BANK
  1. Let xn = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2)...

    Text Solution

    |

  2. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  3. Let f : (0,infty) rarr R be given by f(x) = int(1/x)^(x) e^-(t + 1/t...

    Text Solution

    |

  4. Let f : [a , b]rarr [1, infty] be a continuous function and let g : R ...

    Text Solution

    |

  5. The value of int0^1 4x^3 {d^2/(dx^2) (1 - x^2)^5 } dx is

    Text Solution

    |

  6. The following integral int(pi/4)^(pi/2) (2 cosec x)^17 dx is equal to

    Text Solution

    |

  7. Let f : [0,2] rarr R be a function which is continuous on [0 , 2] and ...

    Text Solution

    |

  8. Given that for each a in (0,1), underset(h rarr 0)(lim) inth^(1 - h)...

    Text Solution

    |

  9. Given that for each a in (0,1), underset(h rarr 0)(lim) inth^(1 - h)...

    Text Solution

    |

  10. Match List - I with List - II

    Text Solution

    |

  11. The integral int0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx equals :

    Text Solution

    |

  12. If I = int0^2 (e^x)^4 (x - alpha) dx = 0, then alpha lies in the inter...

    Text Solution

    |

  13. Suppose M = int0^(pi/2) cosx/(x+2) dx , N = int0^(pi/4) sinxcosx/(x+1)...

    Text Solution

    |

  14. Let f(x) = max{x + absx, x - [x]}, where [x] de notes the greatest int...

    Text Solution

    |

  15. Let f(x) = {(int0^x abs(1 - t) dt , x gt 1),(x - 1/2 , x le 1):} Then

    Text Solution

    |

  16. Statement - 1 : The value of the integral int(pi/6)^(pi/3) dx/(1 + s...

    Text Solution

    |

  17. The value of the integral int-1^+1 { x^2013/(e^absx (x^2 + cos x)) +...

    Text Solution

    |

  18. The value of I = int0^(pi/4) (tan^(n+1)x)dx + 1/2 int0^(pi/2) tan^(n-1...

    Text Solution

    |

  19. The value of the integral int1^2 e^x (loge x + (x+1)/x)dx is

    Text Solution

    |

  20. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |