Home
Class 12
MATHS
Prove that:|[1, a ,a^2],[a^2, 1 ,a],[a, ...

Prove that:`|[1, a ,a^2],[a^2, 1 ,a],[a, a^2, 1]|` is a perfect square.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SHARAM PUBLICATION|Exercise EXAMPLE|156 Videos
  • DIFFERENTIAL EQUATION

    SHARAM PUBLICATION|Exercise EXAMPLE|124 Videos

Similar Questions

Explore conceptually related problems

Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Prove that [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] = 1+a^2+b^2+c^2 and hence show that its maximum value = 1

Express abs((a^2,2ab,b^2),(b^2,a^2,2ab),(2ab,b^2,a^2)) in the form of a perfect square.

Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

Without expanding prove that |[1,a,a^(2),-bc],[1,b,b^(2),-ca],[1,c,c^(2),-ab]|=0

Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|= 1

Prove the following: [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] =1+a^2+b^2+c^2

If A =[[1,2,2],[2,1,2],[2,2,1]] then prove that A^2-4A-5I=0 .

Prove that the point (1,2,3),(-1,1,0),(2, 1, 3) and (1, 1, 2) are coplanar.

SHARAM PUBLICATION-DETERMINANT-EXAMPLE
  1. What is the value of |[i^(103), 3 ,i^(101)],[i^(56), 5, i^(54)],[i^(23...

    Text Solution

    |

  2. Without expanding find the value of the deteminant |[3, 6, 9],[-2, 4 ,...

    Text Solution

    |

  3. Prove that:|[1, a ,a^2],[a^2, 1 ,a],[a, a^2, 1]| is a perfect square.

    Text Solution

    |

  4. Without expanding prove that: |[12, 2, 4, -5, 1],[-8, 1, -5, 2, -1],[6...

    Text Solution

    |

  5. Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

    Text Solution

    |

  6. Solve : |[x-a, 0, 0],[a, x-b, 0],[a, b, x-c]|=0

    Text Solution

    |

  7. What is the value of the determinant |[0, 0, 2],[0, 2, 0],[2, 0 ,0]|

    Text Solution

    |

  8. Solve the following : [[1+x,1,1],[1,1+x,1],[1,1,1+x]]=0

    Text Solution

    |

  9. Find the value of |{:(17,58,97),(19,60,99),(18,59,98):}| without expan...

    Text Solution

    |

  10. Prove that the following. [[1+a,1,1],[1,1+b,1],[1,1,1+c]] = abc(1+1/...

    Text Solution

    |

  11. Evaluate the following determinants: [[0,a^2,b],[b^2,0,a^2],[a,b^2,0...

    Text Solution

    |

  12. Prove that: |[a+b+2c, a, b],[c, b+c+2a, b],[c, a, c+a+2b]|=2(a+b+c)^3

    Text Solution

    |

  13. Without expanding prove that |[1,a,a^(2),-bc],[1,b,b^(2),-ca],[1,c,c^(...

    Text Solution

    |

  14. Prove the following : [[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]]=0

    Text Solution

    |

  15. Given the equations x=cy+bz, y=az+cx and z=bx+ay where x,y and z a...

    Text Solution

    |

  16. Eliminate x,y,z from a=x/y-z, b=y/z-x, c=z/x-y

    Text Solution

    |

  17. Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c]...

    Text Solution

    |

  18. Prove that the following. [[1+a,1,1],[1,1+b,1],[1,1,1+c]] = abc(1+1/...

    Text Solution

    |

  19. Prove that |[x+y, x, x],[5x+4y, 4x, 2x], [10x+8y, 8x, 3x]|=x^3

    Text Solution

    |

  20. Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),...

    Text Solution

    |