Home
Class 12
MATHS
Prove that: |[1, 1, 1],[a, b, c],[a^2, b...

Prove that: `|[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SHARAM PUBLICATION|Exercise EXAMPLE|156 Videos
  • DIFFERENTIAL EQUATION

    SHARAM PUBLICATION|Exercise EXAMPLE|124 Videos

Similar Questions

Explore conceptually related problems

Prove that |(1, a, a^3),(1, b, b^3),(1, c, c^3)| = (a-b)(b-c)(c-a)(a+b+c).

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)

Prove that abs((a,b,c),(a^2,b^2,c^2),(bc,ca,ab))=(a-b)(b-c)(c-a)(ab+bc+ca)

Prove that: |[a+b+2c, a, b],[c, b+c+2a, b],[c, a, c+a+2b]|=2(a+b+c)^3

Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c),(c-a),(a-b)

Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

Prove that |[a-b-c,2a,2a],[2b, b-c-a, 2b],[2c, 2c, c-a-b]|= (a+b+c)^3 .

Using properties of determinants , prove that |{:(1,a,bc),(1,b,ca),(1,c,ab):}|=(a-b)(b-c)(c-a)

Prove that the following. [[a,b,c],[a^2,b^2,c^2],[bc,ca,ab]] =(b-c)(c-a)(a-b)(bc+ca+ab)

Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

SHARAM PUBLICATION-DETERMINANT-EXAMPLE
  1. Prove that:|[1, a ,a^2],[a^2, 1 ,a],[a, a^2, 1]| is a perfect square.

    Text Solution

    |

  2. Without expanding prove that: |[12, 2, 4, -5, 1],[-8, 1, -5, 2, -1],[6...

    Text Solution

    |

  3. Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

    Text Solution

    |

  4. Solve : |[x-a, 0, 0],[a, x-b, 0],[a, b, x-c]|=0

    Text Solution

    |

  5. What is the value of the determinant |[0, 0, 2],[0, 2, 0],[2, 0 ,0]|

    Text Solution

    |

  6. Solve the following : [[1+x,1,1],[1,1+x,1],[1,1,1+x]]=0

    Text Solution

    |

  7. Find the value of |{:(17,58,97),(19,60,99),(18,59,98):}| without expan...

    Text Solution

    |

  8. Prove that the following. [[1+a,1,1],[1,1+b,1],[1,1,1+c]] = abc(1+1/...

    Text Solution

    |

  9. Evaluate the following determinants: [[0,a^2,b],[b^2,0,a^2],[a,b^2,0...

    Text Solution

    |

  10. Prove that: |[a+b+2c, a, b],[c, b+c+2a, b],[c, a, c+a+2b]|=2(a+b+c)^3

    Text Solution

    |

  11. Without expanding prove that |[1,a,a^(2),-bc],[1,b,b^(2),-ca],[1,c,c^(...

    Text Solution

    |

  12. Prove the following : [[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]]=0

    Text Solution

    |

  13. Given the equations x=cy+bz, y=az+cx and z=bx+ay where x,y and z a...

    Text Solution

    |

  14. Eliminate x,y,z from a=x/y-z, b=y/z-x, c=z/x-y

    Text Solution

    |

  15. Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c]...

    Text Solution

    |

  16. Prove that the following. [[1+a,1,1],[1,1+b,1],[1,1,1+c]] = abc(1+1/...

    Text Solution

    |

  17. Prove that |[x+y, x, x],[5x+4y, 4x, 2x], [10x+8y, 8x, 3x]|=x^3

    Text Solution

    |

  18. Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),...

    Text Solution

    |

  19. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  20. Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a...

    Text Solution

    |