Home
Class 12
MATHS
Given the equations x=cy+bz, y=az+cx a...

Given the equations
x=cy+bz, y=az+cx and z=bx+ay
where x,y and z are not all zero, prove that `a^2+b^2+c^2+2abc=1` by determinant method.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SHARAM PUBLICATION|Exercise EXAMPLE|156 Videos
  • DIFFERENTIAL EQUATION

    SHARAM PUBLICATION|Exercise EXAMPLE|124 Videos

Similar Questions

Explore conceptually related problems

Prove that the lines x = ay + b, z = cy + d and x = a'y + b' , z= c'y + d' are perpendicular, if a a' + c c' + 1=0

If cos^-1x+cos^-1y+cos^-1z=pi , prove that x^2+y^2+z^2+2xyz=1 .

solve 3x - 2y + z = 1 2x + y- 5z = 2 x- y - 2z = 3.

The equations x+y+z=6 x+2y+3z=10 x+2y+mz=n given infinite number of value of the triplet (x,y,z,) if

Find the equation of the image of the line (x - 1)/2 = (y + 2)=( z - 1) on the plane 2x-y + z + 1 =0 .

Prove that the circles given by x^2+y^2+2ax+2by+c=0 , and x^2+y^2+2bx+2ay+c=0 , touch each other, if (a + b)^2 = 2c.

Find the 2xx2 mtrix X Given [x y z ]-[-4 3 1] =[-5 1 0] derermine x,y,z.

Prove that the lines x=az+b,y=cz+d and x=a_1z + b_1,y=c_1z+d_1 are perpendicular if aa_1+"cc"_1+1=0.

SHARAM PUBLICATION-DETERMINANT-EXAMPLE
  1. Without expanding prove that |[1,a,a^(2),-bc],[1,b,b^(2),-ca],[1,c,c^(...

    Text Solution

    |

  2. Prove the following : [[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]]=0

    Text Solution

    |

  3. Given the equations x=cy+bz, y=az+cx and z=bx+ay where x,y and z a...

    Text Solution

    |

  4. Eliminate x,y,z from a=x/y-z, b=y/z-x, c=z/x-y

    Text Solution

    |

  5. Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c]...

    Text Solution

    |

  6. Prove that the following. [[1+a,1,1],[1,1+b,1],[1,1,1+c]] = abc(1+1/...

    Text Solution

    |

  7. Prove that |[x+y, x, x],[5x+4y, 4x, 2x], [10x+8y, 8x, 3x]|=x^3

    Text Solution

    |

  8. Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),...

    Text Solution

    |

  9. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  10. Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a...

    Text Solution

    |

  11. Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(...

    Text Solution

    |

  12. Prove that the following. [[a,b,c],[a^2,b^2,c^2],[bc,ca,ab]]=(b-c)(c-a...

    Text Solution

    |

  13. Prove the following: [[(b+c)^2,a^2,bc],[(c+a)^2,b^2,ca],[(a+b)^2,c^2...

    Text Solution

    |

  14. Using the properties of determinants, show that abs[[1+a^2-b^2,2ab,-2b...

    Text Solution

    |

  15. Prove that: |[a, b, c],[a-b, b-c, c-a ], [b+c, c+a, a+b]|= a^3+b^3+c^3...

    Text Solution

    |

  16. If [[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]]=0 then prove that xyz...

    Text Solution

    |

  17. Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z...

    Text Solution

    |

  18. Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|=...

    Text Solution

    |

  19. Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x)....

    Text Solution

    |

  20. Prove [[a^3-x^3,a^2,a],[b^3-x^3,b^2,b],[c^3-x^3,c^2,c]] = (a-b)(a-c)(b...

    Text Solution

    |