Home
Class 12
MATHS
Prove the following: [[1,1,1],[a,b,c],...

Prove the following:
`[[1,1,1],[a,b,c],[a^3,b^3,c^3]]`
=(b-c)(c-a)(a-b)(a+b+c)

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SHARAM PUBLICATION|Exercise EXAMPLE|156 Videos
  • DIFFERENTIAL EQUATION

    SHARAM PUBLICATION|Exercise EXAMPLE|124 Videos

Similar Questions

Explore conceptually related problems

Prove that the following. [[a,b,c],[a^2,b^2,c^2],[bc,ca,ab]] =(b-c)(c-a)(a-b)(bc+ca+ab)

Prove the following: [[a,b,c],[b,c,a],[c,a,b]]=3abc-a^3-b^3-c^3

Prove that the following. [[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]] = abc(a-b)(b-c)(c-a)

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Prove that the following. [[1,1,1],[b+c,c+a,c+a],[b^2+c^2,c^2+a^2,a^2+b^2]] =(b-c)(c-a)(a-b)

Prove the following : [[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]] =0

Prove the following: [[a+b+c,-c,-b],[-c,a+b+c,-a],[-b,-a,a+b+c]] =2(b+c)(c+a)(a+b)

Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]] =4ab

Prove that the following. [[1+a,1,1],[1,1+b,1],[1,1,1+c]] = abc(1+1/a+/b+1/c)

Prove the following: [[b+c,a+b,a],[c+a,b+c,b],[a+b,c+a,c]] = a^3+b^3+c^3-3abc

SHARAM PUBLICATION-DETERMINANT-EXAMPLE
  1. Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),...

    Text Solution

    |

  2. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  3. Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a...

    Text Solution

    |

  4. Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(...

    Text Solution

    |

  5. Prove that the following. [[a,b,c],[a^2,b^2,c^2],[bc,ca,ab]]=(b-c)(c-a...

    Text Solution

    |

  6. Prove the following: [[(b+c)^2,a^2,bc],[(c+a)^2,b^2,ca],[(a+b)^2,c^2...

    Text Solution

    |

  7. Using the properties of determinants, show that abs[[1+a^2-b^2,2ab,-2b...

    Text Solution

    |

  8. Prove that: |[a, b, c],[a-b, b-c, c-a ], [b+c, c+a, a+b]|= a^3+b^3+c^3...

    Text Solution

    |

  9. If [[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]]=0 then prove that xyz...

    Text Solution

    |

  10. Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z...

    Text Solution

    |

  11. Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|=...

    Text Solution

    |

  12. Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x)....

    Text Solution

    |

  13. Prove [[a^3-x^3,a^2,a],[b^3-x^3,b^2,b],[c^3-x^3,c^2,c]] = (a-b)(a-c)(b...

    Text Solution

    |

  14. Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c...

    Text Solution

    |

  15. Prove that: |[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz

    Text Solution

    |

  16. Prove that: |[a+3b, a+5b, a+7b],[a+4b, a+6b, a+8b], [a+5b, a+7b, a+9b]...

    Text Solution

    |

  17. Prove the following: [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] =1+...

    Text Solution

    |

  18. Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^...

    Text Solution

    |

  19. Prove the following: [[b^2-ab,b-c,bc-ac],[ab-a^2,a-b,b^2-ab],[bc-ac,...

    Text Solution

    |

  20. Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2x...

    Text Solution

    |