Home
Class 12
MATHS
Prove that: |[y+z, z, y],[z, z+x, x], [y...

Prove that: `|[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SHARAM PUBLICATION|Exercise EXAMPLE|156 Videos
  • DIFFERENTIAL EQUATION

    SHARAM PUBLICATION|Exercise EXAMPLE|124 Videos

Similar Questions

Explore conceptually related problems

Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z, 2z, z-x-y], [x-y-z, 2x, 2x]| = (x+y+z)^3

Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(z-x)

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2xyz(x+y+z)^3

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c],[p,q,r],[x,y,z]]

Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),(x,y,a+z):}|=a^2 (a+x+y+z)

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(x-y) (y-z) (z-x) (xy+yz+zx)

Prove that the following. [[a,b,c],[x,y,z],[p,q,r]]=[[y,b,q],[x,a,p],[z,c,r]]=[[x,y,z],[p,q,r],[a,b,c]]

SHARAM PUBLICATION-DETERMINANT-EXAMPLE
  1. Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z...

    Text Solution

    |

  2. Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|=...

    Text Solution

    |

  3. Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x)....

    Text Solution

    |

  4. Prove [[a^3-x^3,a^2,a],[b^3-x^3,b^2,b],[c^3-x^3,c^2,c]] = (a-b)(a-c)(b...

    Text Solution

    |

  5. Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c...

    Text Solution

    |

  6. Prove that: |[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz

    Text Solution

    |

  7. Prove that: |[a+3b, a+5b, a+7b],[a+4b, a+6b, a+8b], [a+5b, a+7b, a+9b]...

    Text Solution

    |

  8. Prove the following: [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] =1+...

    Text Solution

    |

  9. Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^...

    Text Solution

    |

  10. Prove the following: [[b^2-ab,b-c,bc-ac],[ab-a^2,a-b,b^2-ab],[bc-ac,...

    Text Solution

    |

  11. Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2x...

    Text Solution

    |

  12. If a, b, c, are in A.P. find the value of |[2y+4, 5y+7, 8y+a],[3y+5, 6...

    Text Solution

    |

  13. Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a...

    Text Solution

    |

  14. If [[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]]=0 then prove that xyz...

    Text Solution

    |

  15. Prove the following: [[a+b+c,-c,-b],[-c,a+b+c,-a],[-b,-a,a+b+c]] =...

    Text Solution

    |

  16. Prove the following: [[b+c,a+b,a],[c+a,b+c,b],[a+b,c+a,c]] =a^3+b^...

    Text Solution

    |

  17. If ax+hy+g=0, hx+by+f=0 and gx+fy+c=lamda, find the value of lamda in ...

    Text Solution

    |

  18. Prove that abs((-2a,a+b,c+a),(a+b,-2b,b+c),(c+a,c+b,-2c))=4(b+c)(c+a)(...

    Text Solution

    |

  19. If 2s=a+b+c show that [[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[...

    Text Solution

    |

  20. If A+B+C = pi, prove that [[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,c...

    Text Solution

    |