Home
Class 12
MATHS
If z(1)=sqrt(3)+i sqrt(3) and z(2)=sqrt(...

If `z_(1)=sqrt(3)+i sqrt(3)` and `z_(2)=sqrt(3)+i` then the complex number `((z_(1))/(z_(2)))` lies in the

A

I quadrant

B

II quadrant

C

III quadrant

D

IV quadrant

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMMON ENTRANCE TEST -2016

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|60 Videos
  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If z_(1)=1+i, z_(2)=sqrt(3)+i, then arg ((z_(1))/(z_(2)))^(50)=

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

Express in the form of complex number z= (5-3i)(2+i)

If z=x+iy and x^(2)+y^(2)=1 . Then the argument of the complex, number ((z-1))/((z+1)) is

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If z_(1) and z_(2) are complex number and (z_(1))/(z_(2)) is purely imaginary then |((z1+z2)/(z1-z2))|=

If z=(sqrt(3)+i)/(sqrt(3)-i) , then the fundamental amplitude of z is :