Home
Class 12
MATHS
The value of ((1+i)/(1-i))^(4 n)=...

The value of `((1+i)/(1-i))^(4 n)=`

A

-1

B

-i

C

i

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMMON ENTRANCE TEST -2016

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|60 Videos
  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos

Similar Questions

Explore conceptually related problems

(1+i)^(4)+(1-i)^(4)=

The value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6)=

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

The smallest integer n such that ((1 + i)/(1-i))^(n) = 1 is

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of |(1+i sqrt(3))/((1+(1)/(i+1))^(2))|=

For any integer n, the argument of ((sqrt(3)+i)^(4 n+1))/((1-i sqrt(3))^(4 n)) is

Find the least positive integer 'n' such that ((1+i)/(1-i))^(n) =1 .