Home
Class 12
MATHS
If n is any positive integer then the va...

If n is any positive integer then the value of `(i^(4 n+1)-i^(4 m-1))/(2)=`

A

1

B

-1

C

i

D

-i

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMMON ENTRANCE TEST -2016

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|60 Videos
  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos

Similar Questions

Explore conceptually related problems

The value of ((1+i)/(1-i))^(4 n)=

If n is a positive integer, then (1+i)^(n)+(1-i)^(n)=

If n is a positive integer satisfying the equation 2+(6*2^(2)-4*2)+(6*3^(2)-4*3)+"......."+(6*n^(2)-4*n)=140 then the value of n is

If n is a positive integer, then: (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is:

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :

If n=4 m+3 , m is an integer then i^(n)=

Find the least positive integer m such that ((1+i)/(1-i))^(4m)=1 .

If n is an odd integer, then (1+i)^(6 n)+(1-i)^(6 n) is equal to

If n is an integer and z=cos theta+i sin theta , then (z^(2 n)-1)/(z^(2 n)+1)=