Home
Class 12
MATHS
(1+i)^(2 n)+(1-i)^(2 n), n in z is...

`(1+i)^(2 n)+(1-i)^(2 n), n in z` is

A

a purely imaginary number

B

a purely real number

C

a non real complex number

D

a complex number z, such that `Re` `z= Im z`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMMON ENTRANCE TEST -2016

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|60 Videos
  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos

Similar Questions

Explore conceptually related problems

If n is an odd integer, then (1+i)^(6 n)+(1-i)^(6 n) is equal to

If (sqrt(3)-i)^(n)=2^(n) , n in Z, then n is a multiple of

The smallest positive integer for which (1 + i)^(2n)=(1 -l)^(2n) is

The least positive integer n, for which ((1+i)^(n))/((1-i)^(n-2)) is positive is

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

If i=sqrt(-1), omega is a non real cube root of unity then ((1+i)^(2 n)-(1-i)^(2 n))/((1+omega-omega^(2))(1-omega+omega^(2)))=

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

For any integer n, the argument of ((sqrt(3)+i)^(4 n+1))/((1-i sqrt(3))^(4 n)) is