Home
Class 12
MATHS
|[4 sin ^2 theta, cos 2 theta],[ -cos 2 ...

`|[4 sin ^2 theta, cos 2 theta],[ -cos 2 theta,cos ^2 theta]| =`

A

`8 sin ^2 theta cos ^2 theta`

B

`4 sin 2 theta cos 2 theta`

C

1

D

`4 cos ^3 theta-3 cos theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos
  • MAXIMA AND MINIMA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|167 Videos

Similar Questions

Explore conceptually related problems

(sin 2 theta)/(1-cos 2 theta)=cot theta

Inverse of the matrix [[cos 2 theta,-sin 2 theta],[sin 2 theta , cos 2 theta]] is

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If A=[[sin theta , cos theta],[-cos theta , -sin theta]] then A^(2)=

If sin theta+sin ^(2) theta=1 then cos ^(12) theta+3 cos ^(10) theta+3 cos ^(8) theta+cos ^(6) theta=

sin ^(6) theta+cos ^(6) theta+3 sin ^(2) theta . cos ^(2) theta=

If |(1+sin^(2)theta, cos^(2)theta, 4 sin 2 theta),(sin^(2) theta, 1+cos^(2)theta, 4sin2 theta),(sin^(2)theta, cos^(2)theta, 4 sin 2 theta-1)|=0 and 0 lt theta lt (pi)/2 then cos 4 theta=

(1+cos 2 theta)/(sin 2 theta)=cot theta

If sin theta+cos theta=a then sin ^(4) theta+cos ^(4) theta=

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1