Home
Class 12
MATHS
|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a)...

`|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)+b^(2),ab,a+b)|=`

A

0

B

`a b+bc+c a`

C

abc

D

`a^2 b^2 c^2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos
  • MAXIMA AND MINIMA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|167 Videos

Similar Questions

Explore conceptually related problems

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

If a^2+b^2+c^2=0 and |(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)|=ka^2b^2c^2 , then the value of k is :

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that abs{:(a^(2) + 1, ab , ac),(ab, b^(2) + 1, bc),(ca, cb, c^(2) +1):}=1 + a^(2) + b^(2) +c^(2)

Using the property of determinants and without expanding prove that {:|( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) |:} =4a^(2) b^(2) c^(2)

|(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|= 0

(a^(2)-b^(2))/(c^(2)-a^(2))=c/b . (sin(A-B))/(sin(C-A))

HIMALAYA PUBLICATION-MATRICES AND DETERMINANTS-QUESTION BANK
  1. |(a,b,c),(b,c,a),(c,a,b)| =

    Text Solution

    |

  2. |[1, a, a^2-b c],[1,b, b^2-c a],[1,c, c^2-a b]|=

    Text Solution

    |

  3. |(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)+b^(2),ab,a+b)|=

    Text Solution

    |

  4. If |[ x+1 ,2 ,3],[1 , x+2,3],[1, 2, x+3]|=0, then x=0 and

    Text Solution

    |

  5. The factors of |[x,a,b],[a,x,b],[a,b,x]|are

    Text Solution

    |

  6. If |[1,2,3],[2,x,3],[3,4,5]|=0 then x=

    Text Solution

    |

  7. The roots of the equation |[0,x,16],[x,5,7],[0,9,x]|= 0 are

    Text Solution

    |

  8. The roots of the equation |[2+x,3,-4],[2,3+x,-4],[2,3,-4+x]|=0 are

    Text Solution

    |

  9. A root of the equation |(0, x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)|=0 is

    Text Solution

    |

  10. The roots of the equation |(x-1,1,1),(1,x-1,1),(1,1,x-1)| = 0 are

    Text Solution

    |

  11. If a+b+c=0 , one root of : |(a-x,c,d),(c,b-x,a),(b,a,c-x)|=0 is :

    Text Solution

    |

  12. The non zero value of x, if |[-x,1,0],[1,-x,1],[0,1,-x]|=0 is

    Text Solution

    |

  13. The factors of |[1,1,1],[x,y,1],[x^2,y^2,1]|are

    Text Solution

    |

  14. The factors of |[x,a,b],[a,x,b],[a,b,x]|are

    Text Solution

    |

  15. If alpha , beta and gammaare roots of the equations x^3+px+q=0 then th...

    Text Solution

    |

  16. |[1^(2),2^(2), 3^(2),4^(2)],[2^(2),3^(2),4^(2),5^(2)],[3^(2),4^(2),5^(...

    Text Solution

    |

  17. The value of [[a,b,c,d],[-a,b,c,d],[-a,-b,c,d],[-a,-b,-c ,d]] is

    Text Solution

    |

  18. If A is a square matrix of order 3 and |A|=8, then |adj A|=

    Text Solution

    |

  19. The value of |(x+y,y+z,z+x),(x,y,z),(x-y,y-z,z-x)|=

    Text Solution

    |

  20. The value of {:[(x,p,q),(p,x,q),(p,q,x)]:} is

    Text Solution

    |