Home
Class 12
MATHS
If x(1), x(2), x(3) as well as y(1), y(2...

If `x_(1), x_(2), x_(3)` as well as `y_(1), y_(2), y_(3)` are in G.P. with the same common ratio, then the points `(x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3))` :

A

(a) lie on a line

B

(b) lie on an ellipse

C

(c) lie on a circle

D

(d) are vertices of a triangle

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|306 Videos
  • Definite Integrals and its Application

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|453 Videos

Similar Questions

Explore conceptually related problems

If x_(1) , x_(2) , x_(3) as well as y_(1), y _(2) , y_(3) are in G.P. with the same common ration, then the points ( x_(1) , y _(1)) , ( x_(2) , y _(2)) and (x_(3) , y _(3))

The distance between the points p(x_(1),y_(1)) and q(x_(2),y_(2)) given by is :

The distance between two points p(x_(1),y_(1)) and q(x_(2),y_(2)) is given be :

Find the coordinates of the mid-point of the line joining the points (x_(1) , y_(1) ) and (x_(2), y_(2)) .

If (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) are the vertices of a triangle whose area is 'k' square units, then |(x_(1),y_(1),4),(x_(2),y_(2),4),(x_(3),y_(3),4)|^(2) is

Area of the triangle with vertices (a, b ), (x_(1), y_(1)) and (x_(2), y_(2)) , where a, x_(1), x_(2) are in G.P. with common ratio r and b, y_(1), y_(2) are in G.P. with common ratio s is :

[[x_(1),y_(1),1],[x_(2),y_(2),1],[x_(3),y_(3),1]] = 0 is the condition that the points (x_(i), y_(j)), i=1,2,3

If |(2a,x_(1),y_(1)),(2b,x_(2),y_(2)),(2c,x_(3),y_(3))| = (abc)/2 != 0 , then the area of the triangle whose vertices are ((x_(1))/a,(y_(1))/a),((x_(2))/b,(y_(2))/b)and ((x_(3))/c,(y_(3))/c)

Area of the triangle with vertices (a, b) (x_(1), y_(1)) and (x_(2), y_(2)) , where a, x_(1), x_(2) are in GP. with common ratio r and b, y_(1), y_(2) are in GP. with common ratio s is :

HIMALAYA PUBLICATION-COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES-QUESTION BANK
  1. The incentre of the triangle with vertices (1, sqrt(3)), (0, 0) and (2...

    Text Solution

    |

  2. Let 0 lt alpha lt pi//4 be a fixed angle. If P=(cos theta, sin theta) ...

    Text Solution

    |

  3. If x(1), x(2), x(3) as well as y(1), y(2), y(3) are in G.P. with the s...

    Text Solution

    |

  4. The number of integral points (integral points means both the coordina...

    Text Solution

    |

  5. Orthocentre of triangle whose vertices are (0, 0), (3, 4), (4, 0) is :

    Text Solution

    |

  6. Let O(0,0), P(3,4), Q(6,0) be the vertices of the triangle O P Q. The ...

    Text Solution

    |

  7. Consider three points P-= (-sin (beta-alpha), -cos beta), Q-= (cos (be...

    Text Solution

    |

  8. A straight line L through the point (3, -2) is inclined at an angle 60...

    Text Solution

    |

  9. The locus of the mid-point of the portion of the line xcos alpha+y sin...

    Text Solution

    |

  10. A line L has intercepts a and b on the coordinate axes, when the axes ...

    Text Solution

    |

  11. A straight line through the point A(3, 4) is such that its intercept b...

    Text Solution

    |

  12. The perpendicular bisector of the line segment joining P(1, 4) and Q(k...

    Text Solution

    |

  13. The line L given by (x)/(5)+(y)/(b)=1 passes through the point (13, 32...

    Text Solution

    |

  14. Angles made with the x -axis by two lines drawn through the point (1,2...

    Text Solution

    |

  15. If a, b, c be in A.P, then a x+b y+c=0 represents

    Text Solution

    |

  16. The circumcentre and the centroid of a triangle are (6,2) and (3,3) th...

    Text Solution

    |

  17. If the sum of the distances of a point from two perpendicular lines in...

    Text Solution

    |

  18. Let p, q, r be distinct positive numbers. Three lines p x+q y+r=0, q x...

    Text Solution

    |

  19. Let 0 leq theta leq (pi)/(2) and x=X cos theta+Y sin theta <bx> y=X si...

    Text Solution

    |

  20. The equation of a line passing through the point of intersection of x-...

    Text Solution

    |