Home
Class 12
MATHS
If tan ^(-1) a^(3)+tan ^(-1) a=tan ^(-1)...

If `tan ^(-1) a^(3)+tan ^(-1) a=tan ^(-1) b,` then `b=`

A

`(a)/(1+a^(2))`

B

`(a^(3)+a)/(1-a^(3))`

C

`(a)/(a^(2)-1)`

D

`(a)/(1-a^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|404 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|354 Videos

Similar Questions

Explore conceptually related problems

tan ^(-1) 1+tan ^(-1) 2+tan ^(-1) 3=

tan ^(-1) (1/3)+tan ^(-1) (1/5)+tan ^(-1) (1/7)=tan ^(-1) x, then x=

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x=

If tan ^(-1)(x+1)+tan ^(-1)(x-1)=tan ^(-1) (8)/(31) then x=

tan ^(-1) (1/11)+tan ^(-1)(2/12)=

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3)) , then x is

tan^(-1)("tan"(pi)/3)