Home
Class 12
MATHS
The value of cot (sin ^(-1) x) is...

The value of `cot (sin ^(-1) x)` is

A

`(sqrt(1+x^(2)))/(x)`

B

`(x)/(sqrt(1+x^(2)))`

C

`(1)/(x)`

D

`(sqrt(1-x^(2)))/(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|404 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|354 Videos

Similar Questions

Explore conceptually related problems

If tan ^(-1) x=(pi)/(10) for some x in R then the value of cot ^(-1) x is

The value of sin (cot^(-1)x) is :

If x + 1/x = 2 , the principal value of sin^(-1) x is

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If sin x+sin ^(2) x=1 then the value of cos ^(2) x+cos ^(4) x is

The value of sin [cot^(-1) {cos (tan^(-1)x)}] is :

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

Find the value of tan { cot ^(-1) ((-2)/3)}