Home
Class 12
MATHS
If cos^(-1) x > sin^(-1) x, then :...

If `cos^(-1) x > sin^(-1) x`, then :

A

`(1)/(sqrt(2)) le x le 1`

B

`0 le xlt(1)/(sqrt(2))`

C

`-1 le x lt(1)/(sqrt(2))`

D

`x gt 0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|404 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|354 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If sin^(-1) x +cos^(-1) (1-x)=sin^(-1) (-x) , then x satisfies :

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

d/dx {cos^(-1)x + sin^(-1)x}=

2 cos^(-1) x = sin^(-1) (2x sqrt(1 - x^(2))) is valid for all values of x satisfying

If 0 le x le 1 and theta = sin^(-1) x + cos^(-1) x - tan^(-1) x , then

Derivative of cos^(-1)x w.r.t sin^(-1)x is

If 4sin^(-1)x + cos^(-1)x = pi, then x equals

If sin^(-1)x+cos^(-1)(1-x)=sin^(-1)(-x) then x satisfies