Home
Class 12
MATHS
lim(x rarr 1) (x^(18)-1)/(x^(6)-1) =...

`lim_(x rarr 1) (x^(18)-1)/(x^(6)-1) =`

A

0

B

(1/3)

C

3

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr -1) (x^(9)+1)/(x^(14)-1)=

lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

If g(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (g(x)-g(1))/(x-1) =

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =

If the function f(x) satisfies lim_(x rarr 1) (f(x) - 2)/(x^(2) - 1) = pi , then lim_(x rarr 1) f(x) =

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

The value of lim_(x rarr 1) (tan^(2)(x-1))/(x^(3)-x^(2)-x+1) =