Home
Class 12
MATHS
lim(x rarr 0) x/(sqrt (4-x) - sqrt(4+x))...

`lim_(x rarr 0) x/(sqrt (4-x) - sqrt(4+x)) = `

A

2

B

(-2)

C

(1/2)

D

(-1/2)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) x/(sqrt(x+4)-2) =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

The value of lim_(x rarr 0) (sqrt(a+x)- sqrt(a-x))/x =

lim_(h rarr 0) (sqrt(x+h) - sqrtx)/h =

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (sqrt (1+x^(2)) - sqrt(1-x^(2)))/x =

lim_(x rarr 0) (sin x)/(sqrt(x + 1) - sqrt(1-x)) is :