Home
Class 12
MATHS
lim(x rarr 0) (sin^(2)(x/4))/(x^(2)) =...

`lim_(x rarr 0) (sin^(2)(x/4))/(x^(2)) = `

A

4

B

(1/4)

C

16

D

(1/16)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (1-cos (x/3))/(x^(2)) =

lim_(x rarr 0) (sin(4x)/(5x) )=

lim_(x rarr 0) (sin (pi cos^(2)x))/(x^(2)) is equal to :

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

lim_(x rarr 0) (sin x^(o) )/x=

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) (sin (pi cos ^(2) x))/(x^(2)) equals :

lim_(x rarr 0) (cos (sinx )-1)/x^(2) =