A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
HIMALAYA PUBLICATION-LIMITS, CONTINUITY AND DIFFERENTIABILITY-QUESTION BANK
- lim(x rarr 0) (1-cos 5x)/(sin 4x) =
Text Solution
|
- lim(x rarr 0) (1-cos 5x)/(sin^(-1) 2x) =
Text Solution
|
- lim(x rarr 0) (1-cos 5x)/(sin3x . tan 2x) =
Text Solution
|
- lim(x rarr 0) (1-cos (x/3))/(x^(2)) =
Text Solution
|
- lim(x rarr 0) (1-cos(4x)^3) / (5x . tan (2x)) =
Text Solution
|
- lim(theta rarr 0) (cos5 theta - cos 7 theta )/(theta^(2)) =
Text Solution
|
- lim(x rarr 0) (cos 2x - cos 7x )/(sin 3x . tan 5x) =
Text Solution
|
- lim(x rarr 0) (cos 9x - cos 7x )/(x^(2)) =
Text Solution
|
- lim(x rarr 0) (cos^(3) 2x - cos ^(3) 3x )/(x^(2)) =
Text Solution
|
- lim(x rarr 0) (tan x - sin x)/(x^(3)) =
Text Solution
|
- lim(x rarr 0) (tan^(3)2 x - sin^(3) 2x)/(x^(5)) =
Text Solution
|
- lim(theta rarr 0) (1-cos theta)/(theta sin theta) =
Text Solution
|
- lim(x rarr pi/2)(sec x - tan x)=
Text Solution
|
- lim(alpha rarr beta)(sin^(2) alpha - sin^(2)beta)/(alpha^(2)-beta^(2))...
Text Solution
|
- lim(theta rarr 0)(sin 5 theta - sin 3 theta)/(theta)=
Text Solution
|
- lim(theta rarr 0)(tan theta - sin theta)/(theta^(3))=
Text Solution
|
- lim(x rarr 0)(e^(x^(2) ) - cos x)/x^(2)=
Text Solution
|
- lim(x rarr 0) (log (1+x))/(3^(x) - 1)=
Text Solution
|
- lim(x rarr 0) (e^(x) + e^(-x) -2)/x^(2)=
Text Solution
|
- lim(x rarr 0) (sin x^(o) )/x=
Text Solution
|