Home
Class 12
MATHS
lim(x rarr 0)(e^(x^(2) ) - cos x)/x^(2)=...

`lim_(x rarr 0)(e^(x^(2) ) - cos x)/x^(2)= `

A

(3/2)

B

(1/2)

C

(2/3)

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (e^(x) + e^(-x) -2)/x^(2)=

lim_(x rarr 0) (x^(2) cos x)/(1- cos x) is

lim_(x rarr 0) (cos 9x - cos 7x )/(x^(2)) =

lim_(x rarr 0) (cosec x - cot x)/x is

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr 0) (1- cos x)/(x^(2)) is :

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) ((1-e^(x))sin x)/(x^(2)+x^(3)) =

The value of lim_(x rarr 0) (int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is :