Home
Class 12
MATHS
lim(x rarr 0) (log (1+x))/(3^(x) - 1)=...

`lim_(x rarr 0) (log (1+x))/(3^(x) - 1)= `

A

`log_(e)3`

B

0

C

1

D

`log_(3)e`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) [[(log(1+x))]/x]=

lim_(x rarr 0) 2/x log (1+x) =

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =

lim_(x rarr 0) (sin x + log (1-x))/(x^(2)) is :

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) - 1) is :

lim_(x rarr 0) (1-cos (x/3))/(x^(2)) =