Home
Class 12
MATHS
lim(x rarr 0) (sin x^(o) )/x=...

`lim_(x rarr 0) (sin x^(o) )/x= `

A

1

B

`pi`

C

`pi/180`

D

`180/pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (|sin x|)/x is

lim_(x rarr 0) (sin(4x)/(5x) )=

For x gt 0, lim_(x rarr 0) ((sin x)^(1//x) + ((1)/(x))^(sin x)) is :

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) (sin x)/(sqrt(x + 1) - sqrt(1-x)) is :

lim_(x rarr 0) (sin x)/(x (1 + cos x)) is equal to :

lim_(x rarr 0) (sin (pi cos ^(2) x))/(x^(2)) equals :

lim_(x rarr 0) (sin^(2)(x/4))/(x^(2)) =

lim_(x rarr 0) (a^(x)-b^(x))/x =