Home
Class 12
MATHS
lim(x rarr oo) ((x-2)(x+4))/(x(x-9)) =...

`lim_(x rarr oo) ((x-2)(x+4))/(x(x-9)) = `

A

0

B

(1/2)

C

(1/3)

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr oo) (1-2/x)^(x) =

lim_(x rarr 0) (sin^(2)(x/4))/(x^(2)) =

lim_(x rarr oo)((x)/(1+x))^(x) =

lim_(x rarr oo) ((x+1)(x+2))/(x^(2)(x+3))=

lim_(x rarr oo) ((2x - 3) (3x - 4))/((4x - 5) (5x - 6)) equals :

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr oo) (2x^(2)-x-1)/(x^(2)+x-2) =

For x in R, lim_(x rarr oo) ((x - 3)/(x + 2))^(x) is :