A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
HIMALAYA PUBLICATION-LIMITS, CONTINUITY AND DIFFERENTIABILITY-QUESTION BANK
- lim(theta rarr pi/2) (1-sin theta )/((pi/2 - theta) cos theta)=
Text Solution
|
- lim(x rarr oo) ((x-2)(x+4))/(x(x-9)) =
Text Solution
|
- lim(x rarr oo) (2x^(2)-x-1)/(x^(2)+x-2) =
Text Solution
|
- lim(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=
Text Solution
|
- lim(x rarr oo) ((x+1)(x+2))/(x^(2)(x+3))=
Text Solution
|
- lim(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=
Text Solution
|
- lim(n rarr oo) (1^(3)+2^(3)+....+n^(3))/(3n^(4)+5n^(3)+6)=
Text Solution
|
- lim(n rarr oo) (1-n^(2))/(sum n)=
Text Solution
|
- Let a = lim(n rarr oo) (1+2+3+.....+n)/(n^(2))=, b = lim(n rarr oo) (...
Text Solution
|
- lim(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=
Text Solution
|
- lim(x rarr oo) {sqrt(x^(2) + 5x -7-x)} =
Text Solution
|
- lim(n rarr oo) n(sqrt(n^(2)+8)-n) =
Text Solution
|
- lim(n rarr oo) (nsqrt(n^(2)+1)-n) =
Text Solution
|
- lim(n rarr oo) n(sqrt(n^(2)+6)-n) =
Text Solution
|
- lim(n rarr oo) (4^(n)+5^(n))^(1/n) =
Text Solution
|
- The value of lim(x rarr 0) ((e^(x)-1)/x)
Text Solution
|
- lim(x rarr oo) ((x+6)/(x+1))^(x+4) =
Text Solution
|
- lim(x rarr 0) (e^(x)-(1+x))/x^(2) =
Text Solution
|
- lim(x rarr 0) (tan (sin^(-1) 3x))/(sin^(-1) (2 tan x)) =
Text Solution
|
- If g(x) = -sqrt(25-x^(2)) the lim(x rarr 1) (g(x)-g(1))/(x-1) =
Text Solution
|