Home
Class 12
MATHS
lim(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=...

`lim_(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=`

A

1

B

2

C

(1/2)

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) ) =

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(x rarr oo) (1+2/n)^(2n)=

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :