Home
Class 12
MATHS
lim(n rarr oo) (1-n^(2))/(sum n)=...

`lim_(n rarr oo) (1-n^(2))/(sum n)=`

A

(-2)

B

(-1)

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) ) =

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

lim_(x rarr oo) (1)/(n^(4)) sum_(r = 1)^(n) r^(3) is :

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

lim_(n rarr oo) n(sqrt(n^(2)+8)-n) =

lim_(n rarr oo) n(sqrt(n^(2)+6)-n) =

lim_(n rarr oo) [(1)/(1-n^(4))+(8)/(1-n^(4))+…...+(n^(3))/(1-n^(4))] equals :