Home
Class 12
MATHS
lim(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+...

`lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=`

A

1

B

(-1)

C

(1/3)

D

(1/6)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

lim_(n rarr oo) 1/n^(3) { 1+3+6+...+ (n(n+1))/2} =

lim_(n rarr oo) 5^(((2x)/(x+3)) =