Home
Class 12
MATHS
lim(x rarr oo) {sqrt(x^(2) + 5x -7-x)} =...

`lim_(x rarr oo) {sqrt(x^(2) + 5x -7-x)} =`

A

2

B

(3/2)

C

(5/2)

D

(7/2)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1-2/x)^(x) =

The value of lim_(x rarr oo) [sqrt(a^(2)x^(2)+ ax+1) - sqrt(a^(2)x^(2)+1)] is

lim_(x rarr oo) (sqrt(a^(2) x^(2) + bx + c) - ax) =

lim_(x rarr 0) x/(sqrt(x+4)-2) =

lim_(x rarr oo) (sqrt(x^(2) + 1) - root(3)(x^(3) + 1))/(root(4)(x^(4) + 1) - root(5) (x^(4) + 1)) equals :

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(x rarr oo) ((x^(2) + 5x + 3)/(x^(2) + x + 2))^(x) is :

lim_(x->oo) (x-sqrt(x^2+x))

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =