Home
Class 12
MATHS
lim(n rarr oo) n(sqrt(n^(2)+6)-n) =...

`lim_(n rarr oo) n(sqrt(n^(2)+6)-n) =`

A

3

B

4

C

(-6)

D

(-3)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) n(sqrt(n^(2)+8)-n) =

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) ) =

lim_(n rarr oo) { n/(n^(2)+1^(2)) + n/(n^(2)+2^(2))+......+ n/(n^(2)+n^(2))} is equal to

lim_(n rarr oo) 5^(((2x)/(x+3)) =

lim_(n rarr oo) (sin n theta)/(sqrt n) =