Home
Class 12
MATHS
If g(x) = -sqrt(25-x^(2)) the lim(x rarr...

If `g(x) = -sqrt(25-x^(2))` the `lim_(x rarr 1) (g(x)-g(1))/(x-1) = `

A

`3/sqrt(24)`

B

`1/sqrt(24)`

C

`-1/sqrt(24)`

D

`-3/sqrt(24)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

If g(x) = 1/sqrt(9+x^(2) then lim_(x rarr 4) ((g(x) - g(4))/(x-4) =

lim_(x rarr 1) (x^(18)-1)/(x^(6)-1) =

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) -1) =

lim_(x rarr -1) (x^(9)+1)/(x^(14)-1)=

lim_(x rarr 1) (log_(e)x)/(x-1) equals :

lim_(x rarr oo)(1+4/(x-1))^(x+3) =

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr oo) ((x+6)/(x+1))^(x+4) =

lim_(x rarr 0) ((1+x)^(n)-1)/x is