Home
Class 12
MATHS
If f(x) = {(mx+1 , xle pi/2),(sinx+n...

If `f(x) = {(mx+1 , xle pi/2),(sinx+n, x gt pi/2):}` is continuous at `x = pi/2`, then

A

m = 1, n =0

B

`m = (npi)/2 +1`

C

`n = (mpi)/2`

D

`m = n = pi/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {((1-sqrt2sinx)/(pi-4x), x ne pi/4),(a, x = pi/4):} is continuous at pi/4 , then a =

f(x) = {((sin 2x)^(tan^(2)2x), x ne pi/4),(k, x = pi/4):} . If f(x) is continuous at x = pi/4 , then k =

Let f(x) = {(-2sinx, x le -pi/2),(asinx +b, -pi/2 lt x lt pi/2),(cosx, x ge pi/2):} then values of a and b so that f(x) is continuous are

If f(x)={{:((3sin pi x)/(5x)", "x !=0),(2K" , " x=0):} is continuous at x=0 , then the value of K is

f(x) = {{:((k cos x)/(pi - 2x) "if" , x ne (pi)/(2)),( 3, "if" x=(pi)/(2)):} at x= pi/2 , f (x) is containuous , find the value of k .

The function is defined by f(x) = {(kx+1,if, x lepi),(cos x,if, x gt pi):} at x = pi .

Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)] , if f(x) is continuous in [0, (pi)/(4)] , then f((pi)/(4)) is :

Let f(x) = {((tanx - cotx)/(x-pi/4), xne pi/4),(a, x = pi/4):} . The value of 'a' so that f(x) is continuous at x = pi/4 is