Home
Class 12
MATHS
lim(n rarr oo) (1^(2)+2^(2)+....+n^(2))/...

`lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =`

A

(1/2)

B

(1/6)

C

(1/10)

D

(1/12)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) 5^(((2x)/(x+3)) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =