Home
Class 12
MATHS
lim(x rarr oo) (1+2/n)^(2n)=...

`lim_(x rarr oo) (1+2/n)^(2n)=`

A

e

B

`e^(2)`

C

`e^(4)`

D

`e^(6)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1-2/x)^(x) =

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

lim_(n rarr oo)[(1+1/n)(1+2/n)…..2]^(1/n) =

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2) )+(n+2)/(n^(2)+2^(2))+(n^+3)/(n^(2)+3^(2))+.....1/n] =

lim_(x rarr oo) (1)/(n^(4)) sum_(r = 1)^(n) r^(3) is :

lim_(x rarr oo) x^(n)/e^(x) = 0 (n is an integer) for

lim_(x rarr oo) (int_(0)^(2x) xe^(2)dx)/(e^(4x^(2))) equals :