Home
Class 12
MATHS
lim(x rarr 0) (1+ax)^(b/x)=...

`lim_(x rarr 0) (1+ax)^(b/x)=`

A

`e^(ab)`

B

`e^(a+b)`

C

`e^(a^(b))`

D

e

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (1-ax)^(1/x) =

If lim_(x rarr 0) (1 + px)^(q/x) = e^(4), where p,q in N , then

If lim_(x rarr 0) (1+px)^(q//x) = e^(4) , where p, q, in N, then :

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =

For x gt 0, lim_(x rarr 0) ((sin x)^(1//x) + ((1)/(x))^(sin x)) is :

lim_(x rarr 0) ((a^(x) + b^(x) + c^(x))/(3))^(2//x) is equal to :