Home
Class 12
MATHS
lim(x rarr 0) (3^(x)-2^(x))/x=...

`lim_(x rarr 0) (3^(x)-2^(x))/x=`

A

(2/3)

B

log (3/2)

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr 0) (4^(x)-9^(x))/(x*(4^(x)+9^(x)) ) =

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

The value of lim_(x rarr 0) (e^(x)-e^(sinx))/(2 (x-sinx))=

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =

lim_(x rarr 0) [(10^(x)-2^(x)-5^(x)+1)/(x . tan x)] =

The value of lim_(x rarr 0) ((e^(x)-1)/x)

The value of lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) is