Home
Class 12
MATHS
lim(x rarr -1) (x^(9)+1)/(x^(14)-1)=...

`lim_(x rarr -1) (x^(9)+1)/(x^(14)-1)=`

A

(9/14)

B

(3/7)

C

(-9/14)

D

(-1)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 1) (x^(18)-1)/(x^(6)-1) =

lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

If the function f(x) satisfies lim_(x rarr 1) (f(x) - 2)/(x^(2) - 1) = pi , then lim_(x rarr 1) f(x) =

lim_(x rarr 0) (1-ax)^(1/x) =

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) -1) =

The value of lim_(x rarr 1) (tan^(2)(x-1))/(x^(3)-x^(2)-x+1) =

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 1) ((ln(1+sinx))/x) & d = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)]) Then [[a,b],[c,d]] is