Home
Class 12
MATHS
lim(x rarr 0) (e^(x) + e^(-x) -2)/x^(2)=...

`lim_(x rarr 0) (e^(x) + e^(-x) -2)/x^(2)= `

A

`(log 3)^(2)`

B

`(log 9)^(2)`

C

2 log 9

D

log 9

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0)(e^(x^(2) ) - cos x)/x^(2)=

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

lim_(x rarr 0) (sin(4x)/(5x) )=

lim_(x rarr 0) (sin x + log (1-x))/(x^(2)) is :

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =