Home
Class 12
MATHS
lim(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(s...

`lim_(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(sqrt(x^(2)-1)) =`

A

(1/2)

B

`sqrt2`

C

1

D

`1/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 2) (sqrt(x-2) + sqrt(x) - sqrt(2))/(sqrt(x^(2) - 4)) is equal to :

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

lim_(x rarr 0) x/(sqrt(x+4)-2) =

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =